Semi-Supervised Few-Shot Learning with Prototypical Networks
نویسندگان
چکیده
We consider the problem of semi-supervised few-shot classification (when the few labeled samples are accompanied with unlabeled data) and show how to adapt the Prototypical Networks [10] to this problem. We first show that using larger and better regularized prototypical networks can improve the classification accuracy. We then show further improvements by making use of unlabeled data.
منابع مشابه
Meta-Learning for Semi-Supervised Few-Shot Classification
In few-shot classification, we are interested in learning algorithms that train a classifier from only a handful of labeled examples. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning algorithm is defined and trained on episodes representing different classification problems, each with a small labeled training set and its corres...
متن کاملFew-Shot Learning with Graph Neural Networks
We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recentl...
متن کاملIclr 2018 F Ew - S Hot L Earning with G Raph N Eural N Et - Works
We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recentl...
متن کاملLearning to Learn: Meta-Critic Networks for Sample Efficient Learning
We propose a novel and flexible approach to meta-learning for learning-to-learn from only a few examples. Our framework is motivated by actor-critic reinforcement learning, but can be applied to both reinforcement and supervised learning. The key idea is to learn a meta-critic: an action-value function neural network that learns to criticise any actor trying to solve any specified task. For sup...
متن کاملTransfer Learning in a Transductive Setting
Category models for objects or activities typically rely on supervised learning requiring sufficiently large training sets. Transferring knowledge from known categories to novel classes with no or only a few labels is far less researched even though it is a common scenario. In this work, we extend transfer learning with semi-supervised learning to exploit unlabeled instances of (novel) categori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.10856 شماره
صفحات -
تاریخ انتشار 2017